
JPEO JTRS

Joint Program Executive Office
Joint Tactical Radio System

Statement B – Distribution authorized to U.S. Government Agencies only; Further dissemination at the direction of JPEO JTRS or higher authority onlyDistribution A- Approved for public release; distribution is unlimited (06 August 2010)

24-25 August 2010
JTRS SCA Working Group

Component Model Introduction

2Distribution A- Approved for public release; distribution is unlimited (06 August 2010)

• Objective
– Formalize Component concept into the SCA

• SCA has numerous references to Components, but does not define the term
• SCA lacks a clear representation that captures the runtime characteristics of

instantiated elements

• Benefits
– Improves the clarity and consistency of the specification

• provides concrete bridge from interface to implementation which will be more
important as optional capabilities are introduced

• highlights implementation expectations, responsibilities and requirements
– Provides a platform that establishes a convention for the use of Modeling

and of Model Driven Development techniques in the development of SCA
compliant products

• Impact
– Should be negligible for most existing implementations
– Will necessitate changes in current SCA object models
– SCA document will look significantly different, with general behavioral

requirements being allocated to a Component rather than attempting
to be assigned to an Interface

3Distribution A- Approved for public release; distribution is unlimited (06 August 2010)

• Interface
1. “A shared boundary or connection between two entities ...”

2. Specifies a well-defined – and limited – “Role” which needs to be
fulfilled, which may be:

• “functional” – definition of specific behavior to be performed; “to DO”
• “non-functional” – criteria used to judge the qualities of operation: “to BE”

3. Defines WHAT needs to be done, WHY it needs to be done, but NOT
HOW to do it – as-such, most pure Interfaces tend to be stateless

4. Since a ‘good’ Interface needs to define a limited Role, and complex
system elements generally need to fulfill multiple Roles, often multiple
separate Interfaces are required to fully-define the set of functional and
non-functional requirements:

• quite often, there are interactions between multiple Interfaces – i.e., only certain
sequences of use provide useful functionality

• therefore, it is often-useful to package these interactions between multiple
Interfaces into an integrated unit of defined behavior – a Component

4Distribution A- Approved for public release; distribution is unlimited (06 August 2010)

• Component
1. “An autonomous unit within a system or subsystem ...”

• provides one or more Interfaces which users may access
• internals are hidden and inaccessible other than as provided by its Interfaces

2. Encapsulates a modular, replaceable part of a system within its
defined environment

• implements its own self-contained lifecycle, which may include sequential
interaction requirements which exist between multiple provided Interfaces

• presents a complete and consistent view of its execution requirements (MIPS,
memory, etc) to its physical environment

• serves as a Type definition, whose conformance is defined by both the
‘provided’ as well as the ‘required’ Interfaces

• encompasses both static and dynamic semantics (behaviors)
• represents how developments may implement their software elements when

multiple Roles / Interfaces must be fulfilled – e.g., a “CF::Resource”
Component, which must fulfill the Roles / Interfaces prescribed by
“CF::PortSupplier”, “CF::PropertySet”, “CF::LifeCycle”, and
“CF::TestableObject”

5Distribution A- Approved for public release; distribution is unlimited (06 August 2010)

Why A Component Model Is Required
Interface Characteristic Component Characteristic

Role -oriented à best suited as problem
domain / analysis-level abstractions

Service -oriented à best suited as solution
domain / functional-level abstractions

Conceptual / Abstract / Unbounded
Responsibilities

Practical / Concrete / Constrained
Responsibilities

Have no implementation mechanisms Can – and often do – provide prototype or
default implementations

A NECESSARY – though NOT SUFFICIENT
– element of Portability and Detailed
Architecture / Design Reuse

Properly-developed, Components improve
– but do not guarantee – prospects of
Portability and Detailed Architecture /
Design Reuse

Interfaces are generally SYNTAX without an
underlying SEMANTIC definition, and are
generally seen as STATELESS as a result

Components MUST HAVE well-defined
SEMANTIC baselines because they fulfill
multiple Roles within a Frameworkà
Components are MUCH-MORE than the
sum of the Interfaces which they implement

Preferred in THEORY Preferred in PRACTICE

6Distribution A- Approved for public release; distribution is unlimited (06 August 2010)

• Resource
• Resource Factory
• Device
• Loadable Device
• Executable Device
• Aggregate Device
• Device Manager
• Domain Manager
• Application Resource
• Application
• Application Manager
• Service
• File
• File System
• File Manager
• Application Factory

Not Surprisingly, The Initial Set Of
Candidate Components Being

Contemplated Follow The Current
SCA Core Framework Interface

Definitions ...

7Distribution A- Approved for public release; distribution is unlimited (06 August 2010)

ComponentBase
cmp ComponentBase

ComponentBase

«interface»
ComponentIdentifier

«readonly»
+ identifier: string

Descriptor

+ filename: string

«interface»
CF::TestableObject

+ runTest(unsigned long, Properties*) : void
«interface»

CF::PropertySet

+ configure(Properties) : void
+ query(Properties*) : void

«interface»
CF::PortAccessor«interface»

CF::ControllableComponent

Testable Object,
PropertySet, PortAccessor,
ComponentIdentifier and
Controllable Component
are all Optional
Component Interfaces

Type of Properties, i.e.
test, configure, query
dictates some of the
Componet supported
interfaces

ComponentBaseDev ice

1
1..*

Additional
Interfaces
Defined:

• ComponentIdentifier

• PortAccessor

• ControllableComponent

... a non-standard UML notation is required here to indicate this
concept, which is simple to accomplish within the IDL definitions
of the Interfaces inherited / realized but currently lacks a standard
OMG UML notation

optional

optional

optional

optional

optional

Note that a non-standard concept of “Optional Inheritance” (aka:
“Optional Realization”) is being introduced here in order to reduce
the potential for “ComponentBase” type bloat ...

8Distribution A- Approved for public release; distribution is unlimited (06 August 2010)

ComponentBase

• A Component may realize the ComponentIdentifier interface.
• A Component shall be associated with at least one descriptor file.
• If a Component has test properties, then the component shall realize the TestableObject Interface.
• If a Component has configure and/or query properties, then the component shall realize the PropertySet interface.
• If a Component has dynamic provides Ports, then the component shall realize the PortAccesssor interface.
• If a Component has uses Ports, then the component shall realize the PortAccessor interface.
• A Component that realizes the TestableObject interface shall support all the TestProperty types and values as stated

in the component’s descriptor.
• A Component that realizes the PropertySet interface shall support all the configure and/or query properties as stated

in the component’s descriptor.
• The PortAccessor interface shall support all the uses or dynamic provides Ports as specified in the component’s

descriptor that realizes this interface.
• The connectPort operation shall support all of the uses Ports identified in the component’s descriptor.
• Components shall implement a ConfigureProperty with a name of PRODUCER_LOG_LEVEL when connected to a log

service. The PRODUCER_LOG_LEVEL ConfigureProperty provides the ability to “filter” the log message output of a
Component. This property may be configured via the PropertySet interface to output only specific log levels.

• Components shall output only those log records to a LogService that correspond to enabled log level values in the
PRODUCER_LOG_LEVEL attribute. Log levels that are not in the PRODUCER_LOG_LEVEL attribute are disabled.

• Components shall use their identifier in the log record output to the LogService.
• Components shall operate normally in the case where the connections to a LogService are nil or an invalid reference.
• A Component may also take on additional behavior for life cycle management by realizing the LifeCycle interface that

would be used during deployment and teardown of a component.
• A Component may also realize the ControllableComponent interface to provide overall management control of the

component.
• The PropertySet::configure(), PropertySet::query(), and Testable::runTest(), and Resource::start() operations are

not inhibited by the Resource::stop() operation.
• A fundamental state model relationship exists between Lifecycle and ControllableComponent interfaces.

9Distribution A- Approved for public release; distribution is unlimited (06 August 2010)

A General Pattern Emerges ...
cmp ResourceComponent

ResourceComponent

ComponentBase«interface»
CF::Resource

cmp Dev iceComponent

Dev iceComponentApplicationFactoryComponent

«interface»
CF::Dev ice

ApplicationManagerComponent

AggregateDev iceComponent

ComponentBase

+compositeDevice

«capacity deallocator»

«capacity allocator»

cmp LoadableDev iceComponent

LoadableDev iceComponent

«interface»
CF::LoadableDev ice ComponentBaseDev ice

cmp ExecutableDev iceComponent

ExecutableDev iceComponent

«interface»
CF::ExecutableDev ice

- PRIORITY_ID: string = "PRIORITY" {readOnly}
- STACK_SIZE_ID: string = "STACK_SIZE" {readOnly}

+ execute(string, Properties, Properties) : ProcessID_Type
+ terminate(ProcessID_Type) : void

ComponentBaseDev ice

10Distribution A- Approved for public release; distribution is unlimited (06 August 2010)

• A format for the Component descriptions
(documentation) is currently being established:
– The established SCA precedent for Interface definitions

(description, UML, types, attributes, operations) is not
applicable for Component definitions

– Proposal involves a 4 part structure:
• description – summary of what the Component is

• associations – identifies and explains relationships between the
Component and other system elements

• constraints – this encompasses restrictions on the structural
features of the Component

• semantics – explanation of the expected behavior of the
Component, this may contain supporting text, rationale and
requirements

11Distribution A- Approved for public release; distribution is unlimited (06 August 2010)

• Existing SCA v2.2.2 convention of italicized text
(e.g. “resource” will be replaced by its
“xComponent” counterpart

• CORBA neutral PIM operation signatures will be
replaced with “xComponent” when referring to an
SCA defined interface type – these references will
revert back to the interface name in the PSM
representation

12Distribution A- Approved for public release; distribution is unlimited (06 August 2010)

13Distribution A- Approved for public release; distribution is unlimited (06 August 2010)

ComponentBase

Application
Factory

Domain
Manager

Specialized Framework Component

DomainManager

Device
Manager

DeviceManager

Application
Application

ApplicationFactory

Concrete Components

Abstract Stereotypes

Loadable
Device

Loadable
Device

Executable
Device

ExecutableDevice

Resource
Factory

ResourceFactory

Resource
Resource

Specialized Device
Component

Device
Device

	Components
	Interfaces
	Component
	Interfaces
	Interfaces
	Interfaces
	Type
	Interfaces
	Roles
	Interfaces
	Roles
	Interfaces
	Component
	best suited as problem domain / analysis-level abstractions
	-oriented
	best suited as solution domain / functional-level abstractionsConceptual / Abstract / Unbounded Responsibilities Practical / Concrete / Constrained ResponsibilitiesHave no implementation mechanisms Can – and often do – provide prototype or default impleme
	-oriented
	improve – but do not guarantee – prospects of
	Properly-developed,
	and
	and
	/
	/
	MUST HAVE well-defined
	without an underlying
	are generally
	baselines because they fulfill multiple
	definition, and are generally seen as
	within a
	as a result
	are MUCH-MORE than the sum of the Interfaces which they implementPreferred in
	Preferred in

